Scoring, term weighting, the vector space model

December, 2009
Overview

1. Term frequency

2. tf-idf weighting

3. The vector space
Outline

1. Term frequency
2. tf-idf weighting
3. The vector space
Ranked retrieval

- Thus far, our queries have all been Boolean.
Ranked retrieval

- Thus far, our queries have all been Boolean.
- Documents either match or don't.
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
Ranked retrieval

■ Thus far, our queries have all been Boolean.
 ■ Documents either match or don't.
■ Good for expert users with precise understanding of their needs and the collection.
■ Also good for applications: Applications can easily consume 1000s of results.
■ Not good for the majority of users.
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Most users are not capable of writing Boolean queries (or they are, but they think it’s too much work).
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Most users are not capable of writing Boolean queries (or they are, but they think it’s too much work).
- Most users don’t want to wade through 1000s of results.
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don’t.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Most users are not capable of writing Boolean queries (or they are, but they think it’s too much work).
- Most users don’t want to wade through 1000s of results.
- This is particularly true of web search.
Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: “standard user dlink 650” → 200,000 hits
Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: “standard user dlink 650” → 200,000 hits
- Query 2: “standard user dlink 650 no card found”: 0 hits
Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (0) or too many (1000s) results.
- Query 1: “standard user dlink 650” → 200,000 hits
- Query 2: “standard user dlink 650 no card found”: 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: “standard user dlink 650” → 200,000 hits
- Query 2: “standard user dlink 650 no card found”: 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
- With a ranked list of documents it does not matter how large the retrieved set is.
We wish to return in order the documents most likely to be useful to the searcher.
We wish to return in order the documents most likely to be useful to the searcher.

How can we rank-order the documents in the collection with respect to a query?
We wish to return in order the documents most likely to be useful to the searcher.

How can we rank-order the documents in the collection with respect to a query?

Assign a score – say in $[0, 1]$ – to each document.
Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score — say in [0, 1] — to each document
- This score measures how well document and query “match”.
We need a way of assigning a score to a query/document pair.
We need a way of assigning a score to a query/document pair.

Let's start with a one-term query.
Query-document matching scores

- We need a way of assigning a score to a query/document pair.
- Let’s start with a one-term query.
- If the query term does not occur in the document: score should be 0.
Query-document matching scores

- We need a way of assigning a score to a query/document pair.
- Let’s start with a one-term query.
- If the query term does not occur in the document: score should be 0.
- The more frequent the query term in the document, the higher the score.
Query-document matching scores

- We need a way of assigning a score to a query/document pair.
- Let’s start with a one-term query.
- If the query term does not occur in the document: score should be 0.
- The more frequent the query term in the document, the higher the score.
- We will look at a number of alternatives for doing this.
Take 1: Jaccard coefficient

- Recall from IIR 3: A commonly used measure of overlap of two sets
Take 1: Jaccard coefficient

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
Take 1: Jaccard coefficient

Recall from IR 3: A commonly used measure of overlap of two sets

Let \(A \) and \(B \) be two sets

Jaccard coefficient:

\[
\text{jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]
Take 1: Jaccard coefficient

- Recall from IIIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:
 \[
 \text{jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
 \]
- $\text{jaccard}(A, A) = 1$
Take 1: Jaccard coefficient

- Recall from IR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- $jaccard(A, A) = 1$
- $jaccard(A, B) = 0$ if $A \cap B = 0$
Take 1: Jaccard coefficient

- Recall from IR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$\text{jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- $\text{jaccard}(A, A) = 1$
- $\text{jaccard}(A, B) = 0$ if $A \cap B = 0$
- A and B don’t have to be the same size.
Take 1: Jaccard coefficient

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:
 \[\text{jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|} \]
- $\text{jaccard}(A, A) = 1$
- $\text{jaccard}(A, B) = 0$ if $A \cap B = 0$
- A and B don’t have to be the same size.
- Always assigns a number between 0 and 1.
Jaccard coefficient: Example

What is the query-document match score that the Jaccard coefficient computes for:
Jaccard coefficient: Example

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: “ides of March”
Jaccard coefficient: Example

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: “ides of March”
 - Document “Caesar died in March”
Jaccard coefficient: Example

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: “ides of March”
 - Document “Caesar died in March”
 - ?
What’s wrong with Jaccard?

- It doesn’t consider term frequency (how many occurrences a term has).
What’s wrong with Jaccard?

- It doesn’t consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn’t consider this information.
What’s wrong with Jaccard?

- It doesn’t consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn’t consider this information.
- We need a more sophisticated way of normalizing for length.
What's wrong with Jaccard?

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn't consider this information.
- We need a more sophisticated way of normalizing for length.
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) ...
What’s wrong with Jaccard?

- It doesn’t consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn’t consider this information.
- We need a more sophisticated way of normalizing for length.
- Later in this lecture, we’ll use $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) ...
- ... instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.
Recall: Binary incidence matrix

	Anthony and Caesar	The Tempest	Hamlet	Othello	Macbeth	...
Anthony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0, 1\}^{|V|}$.
Recall: Binary incidence matrix

<table>
<thead>
<tr>
<th></th>
<th>Anthony</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony and Cleopatra</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Each document is represented by a binary vector $\in \{0, 1\}^{|V|}$.
From now on, we will use the frequencies of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Anthony</th>
<th>Julius</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Each document is represented by a count vector $\in \mathbb{N}^{|V|}$.
From now on, we will use the frequencies of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Anthony</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

...

Each document is represented by a count vector $\in \mathbb{N}^{|V|}$.
Bag of words model

- We do not consider the order of words in a document.
Bag of words model

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
Bag of words model

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
Bag of words model

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
Bag of words model

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at “recovering” positional information later in this course.
We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able to distinguish these two documents.

We will look at “recovering” positional information later in this course.

For now: bag of words model
Term frequency tf

- The term frequency $t_f_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

We want to use tf when computing query-document match scores. But how? Raw term frequency is not what we want. A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term. But not 10 times more relevant. Relevance does not increase proportionally with term frequency.
The term frequency $tf_{t,d}$ of term t in document d is defined as the **number of times that t occurs in d**.

We want to use tf when computing query-document match scores.
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

- We want to use tf when computing query-document match scores.

- But how?

- Raw term frequency is not what we want.

- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.

- But not 10 times more relevant.
The term frequency $\text{tf}_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

We want to use tf when computing query-document match scores.

But how?

Raw term frequency is not what we want.

A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term frequency.
The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

We want to use tf when computing query-document match scores.

But how?

Raw term frequency is not what we want.

A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term frequency.
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.
Log frequency weighting

- The log frequency weight of term t in d is defined as follows:

$$w_{t,d} = \begin{cases}
1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\
0 & \text{otherwise}
\end{cases}$$
The log frequency weight of term t in d is defined as follows:

$$w_{t,d} = \begin{cases}
1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\
0 & \text{otherwise}
\end{cases}$$

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.
Log frequency weighting

- The log frequency weight of term t in d is defined as follows:

$$w_{t,d} = \begin{cases}
1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\
0 & \text{otherwise}
\end{cases}$$

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.

- Score for a document-query pair: sum over terms t in both q and d:

$$\text{matching-score} = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$
Log frequency weighting

The log frequency weight of term t in d is defined as follows:

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:
 $$\text{matching-score} = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$
- The score is 0 if none of the query terms is present in the document.
Outline

1. Term frequency
2. tf-idf weighting
3. The vector space
Document frequency

- Rare terms are more informative than frequent terms.
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant.
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like arachnocentric.
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like arachnocentric.
- Consider a term in the query that is frequent in the collection (e.g., high, increase, line)
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like arachnocentric.
- Consider a term in the query that is frequent in the collection (e.g., high, increase, line)
 - A document containing this term is more likely to be relevant than a document that doesn’t, but it’s not a sure indicator of relevance.
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like arachnocentric.
- Consider a term in the query that is frequent in the collection (e.g., high, increase, line)
 - A document containing this term is more likely to be relevant than a document that doesn’t, but it’s not a sure indicator of relevance.
 - → For frequent terms, we want positive weights for words like high, increase, and line, but lower weights than for rare terms.

We will use document frequency to factor this into computing the matching score. The document frequency is the number of documents in the collection that the term occurs in.
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocratic)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like arachnocratic.
- Consider a term in the query that is frequent in the collection (e.g., high, increase, line)
 - A document containing this term is more likely to be relevant than a document that doesn’t, but it’s not a sure indicator of relevance.
 - → For frequent terms, we want positive weights for words like high, increase, and line, but lower weights than for rare terms.
- We will use document frequency to factor this into computing the matching score.
Document frequency

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant.
 - We want a high weight for rare terms like arachnocentric.
- Consider a term in the query that is frequent in the collection (e.g., high, increase, line)
 - A document containing this term is more likely to be relevant than a document that doesn’t, but it’s not a sure indicator of relevance.
 - For frequent terms, we want positive weights for words like high, increase, and line, but lower weights than for rare terms.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.
idf weight

- df_t is the document frequency, the number of documents that t occurs in.
idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$idf_t = \log_{10} \frac{N}{df_t}$$
idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$idf_t = \log_{10} \frac{N}{df_t}$$

- idf is a measure of the informativeness of the term.
idf weight

- d_{ft} is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$idf_t = \log_{10} \frac{N}{df_t}$$

- idf is a measure of the informativeness of the term.
- We use $\log N/df_t$ instead of N/df_t to “dampen” the effect of idf.
idf weight

- dfₜ is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

 \[\text{idf}_t = \log_{10} \frac{N}{\text{df}_t} \]

- idf is a measure of the informativeness of the term.
- We use \(\log \frac{N}{\text{df}_t} \) instead of \(\frac{N}{\text{df}_t} \) to “dampen” the effect of idf.
- So we use the log transformation for both term frequency and document frequency.
Examples for idf

Compute idf_t using the formula:

$$idf_t = \log_{10} \frac{1,000,000}{df_t}$$

<table>
<thead>
<tr>
<th>term</th>
<th>df_t</th>
<th>idf_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>sunday</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td></td>
</tr>
</tbody>
</table>
Examples for idf

Compute idf_t using the formula:

$$idf_t = \log_{10} \frac{1,000,000}{df_t}$$

<table>
<thead>
<tr>
<th>term</th>
<th>df_t</th>
<th>idf_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>sunday</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td>2</td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td>0</td>
</tr>
</tbody>
</table>
Effect of idf on ranking

- idf affects the ranking of documents only if the query has at least two terms.
Effect of idf on ranking

- idf affects the ranking of documents only if the query has at least two terms.
- For example, in the query “arachnocentric line”, idf weighting increases the relative weight of arachnocentric and decreases the relative weight of line.
Effect of idf on ranking

- idf affects the ranking of documents only if the query has at least two terms.
- For example, in the query “arachnocentric line”, idf weighting increases the relative weight of arachnocentric and decreases the relative weight of line.
- idf has no effect on ranking for one-term queries.
Effect of idf on ranking

- idf affects the ranking of documents only if the query has at least two terms.
- For example, in the query “arachnocentric line”, idf weighting increases the relative weight of arachnocentric and decreases the relative weight of line.
- idf has no effect on ranking for one-term queries.
- Questions about idf?
Collection frequency vs. Document frequency

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- The collection frequency of t is the number of tokens of t in the collection where we count multiple occurrences.
Collection frequency vs. Document frequency

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- The collection frequency of t is the number of tokens of t in the collection where we count multiple occurrences.
- **Why these numbers?**
Collection frequency vs. Document frequency

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- The collection frequency of t is the number of tokens of t in the collection where we count multiple occurrences.

- **Why these numbers?**

- **Which word is a better search term (and should get a higher weight)?**
Collection frequency vs. Document frequency

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- The collection frequency of t is the number of tokens of t in the collection where we count multiple occurrences.
- Why these numbers?
- Which word is a better search term (and should get a higher weight)?
- This example suggests that df is better for weighting that cf.
The tf-idf weight of a term is the product of its tf weight and its idf weight.
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t} \]
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t} \]

- Best known weighting scheme in information retrieval
The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t} \]

Best known weighting scheme in information retrieval

Note: the “-” in tf-idf is a hyphen, not a minus sign!
tf-idf weighting

- The tf-idf weight of a term is the **product of its tf weight and its idf weight**.

\[
\omega_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t}
\]

- Best known weighting scheme in information retrieval
- Note: the “-” in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf
Summary: tf-idf

- Assign a tf-idf weight for each term t in each document d:

 \[w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t} \]
Summary: tf-idf

- Assign a tf-idf weight for each term t in each document d:
 \[w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t} \]
- N: total number of documents
Summary: tf-idf

- Assign a tf-idf weight for each term t in each document d:

$$w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df_t}$$

- N: total number of documents
- Increases with the number of occurrences within a document
Summary: tf-idf

- Assign a tf-idf weight for each term t in each document d:
 \[w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t} \]
- N: total number of documents
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection
Term, collection and document frequency

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>term frequency</td>
<td>$tf_{t,d}$</td>
<td>number of occurrences of t in d</td>
</tr>
<tr>
<td>document frequency</td>
<td>df_t</td>
<td>number of documents in the collection that t occurs in</td>
</tr>
<tr>
<td>collection frequency</td>
<td>cf_t</td>
<td>total number of occurrences of t in the collection</td>
</tr>
</tbody>
</table>
Term, collection and document frequency

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>term frequency</td>
<td>$tf_{t,d}$</td>
<td>number of occurrences of t in d</td>
</tr>
<tr>
<td>document frequency</td>
<td>df_{t}</td>
<td>number of documents in the collection that t occurs in</td>
</tr>
<tr>
<td>collection frequency</td>
<td>cf_{t}</td>
<td>total number of occurrences of t in the collection</td>
</tr>
</tbody>
</table>

- **Relationship between df and cf?**
Term, collection and document frequency

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>term frequency</td>
<td>$tf_{t,d}$</td>
<td>number of occurrences of t in d</td>
</tr>
<tr>
<td>document frequency</td>
<td>df_t</td>
<td>number of documents in the collection that t occurs in</td>
</tr>
<tr>
<td>collection frequency</td>
<td>cf_t</td>
<td>total number of occurrences of t in the collection</td>
</tr>
</tbody>
</table>

- **Relationship between tf and cf?**
Outline

1. Term frequency
2. tf-idf weighting
3. The vector space
Binary → count → weight matrix

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>5.25</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.10</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0.0</td>
<td>1.51</td>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0.0</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0.0</td>
<td>1.90</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0.0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Each document is now represented by a real-valued vector of tf-idf weights \(\in \mathbb{R}^{|V|} \).
Binary → count → weight matrix

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>5.25</td>
<td>3.18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.10</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0.0</td>
<td>1.51</td>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0.0</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0.0</td>
<td>1.90</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0.0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
Documents as vectors

- Each document is now represented by a real-valued vector of tf-idf weights \(\in \mathbb{R}^{\mid V\mid} \).
- So we have a \(\mid V\mid\)-dimensional real-valued vector space.
Documents as vectors

- Each document is now represented by a real-valued vector of tf-idf weights ∈ \(\mathbb{R}^{|V|} \).
- So we have a \(|V|\)-dimensional real-valued vector space.
- Terms are axes of the space.
Documents as vectors

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a $|V|$-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
Documents as vectors

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a $|V|$-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine.
Documents as vectors

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a $|V|$-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine.
- This is a very sparse vector - most entries are zero.
Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the space
Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity \approx \text{negative distance}
Queries as vectors

- **Key idea 1:** do the same for queries: represent them as vectors in the space
- **Key idea 2:** Rank documents according to their proximity to the query
- **proximity = similarity**
- **proximity ≈ negative distance**
- **Recall:** We’re doing this because we want to get away from the you’re-either-in-or-out Boolean model.
Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the space.
- Key idea 2: Rank documents according to their proximity to the query.
- Proximity = similarity.
- Proximity \approx negative distance.
- Recall: We’re doing this because we want to get away from the you’re-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents.
How do we formalize vector space similarity?

- First cut: distance between two points
How do we formalize vector space similarity?

- First cut: distance between two points
- (= distance between the end points of the two vectors)
How do we formalize vector space similarity?

- First cut: distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
How do we formalize vector space similarity?

- First cut: distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea...
How do we formalize vector space similarity?

- First cut: distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . .because Euclidean distance is large for vectors of different lengths.
Why distance is a bad idea

The Euclidean distance of vector \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.
Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.
Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Questions about basic vector space setup?
Use angle instead of distance

- Rank documents according to angle with query
Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.

Semantically d and d' have the same content. The angle between the two documents is 0, corresponding to maximal similarity. The Euclidean distance between the two documents can be quite large.
Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.
- “Semantically” d and d' have the same content.
Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.
- “Semantically” d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity.
Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.
- “Semantically” d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity.
- The Euclidean distance between the two documents can be quite large.
From angles to cosines

- The following two notions are equivalent.
From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the \textit{angle} between query and document in decreasing order.
 - Rank documents according to \textit{cosine}(query, document) in increasing order.
From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to \(\cosine(query, document) \) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval \([0^\circ, 180^\circ]\)
Cosine

The figure shows a cosine function graph with the x-axis ranging from 0 to 360 degrees and the y-axis ranging from -1 to 1. The graph depicts a repeating pattern, characteristic of the cosine function, which oscillates between -1 and 1.
What about angles $> 180^\circ$?
Length normalization

- How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its components by its length. Here we use the L^2 norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

This maps vectors onto the unit sphere. . . since after normalization:

$$||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$$

As a result, longer documents and shorter documents have weights of the same order of magnitude.
Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L_2 norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$
Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L_2 norm:
 \[\|x\|_2 = \sqrt{\sum_i x_i^2} \]
- This maps vectors onto the unit sphere . . .
Length normalization

- How do we compute the cosine?

- A vector can be (length-) normalized by dividing each of its components by its length — here we use the L_2 norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- This maps vectors onto the unit sphere . . .

- . . . since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L_2 norm:
 \[\|x\|_2 = \sqrt{\sum_i x_i^2} \]
- This maps vectors onto the unit sphere . . .
- . . . since after normalization: $\|x\|_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L_2 norm:
 $$||x||_2 = \sqrt{\sum_i x_i^2}$$
- This maps vectors onto the unit sphere . . .
- . . . since after normalization:
 $$||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
Cosine similarity between query and document

\[
\cos(\vec{q}, \vec{d}) = \text{sim}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

- \(q_i\) is the tf-idf weight of term \(i\) in the query.
Cosine similarity between query and document

\[
\cos(\vec{q}, \vec{d}) = \text{sim}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

- \(q_i \) is the tf-idf weight of term \(i \) in the query.
- \(d_i \) is the tf-idf weight of term \(i \) in the document.
Cosine similarity between query and document

\[
\cos(\vec{q}, \vec{d}) = \text{sim}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| \cdot |\vec{d}|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \cdot \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

- \(q_i\) is the tf-idf weight of term \(i\) in the query.
- \(d_i\) is the tf-idf weight of term \(i\) in the document.
- \(|\vec{q}|\) and \(|\vec{d}|\) are the lengths of \(\vec{q}\) and \(\vec{d}\).
Cosine similarity between query and document

\[\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}} \]

- \(q_i \) is the tf-idf weight of term \(i \) in the query.
- \(d_i \) is the tf-idf weight of term \(i \) in the document.
- \(|\vec{q}|\) and \(|\vec{d}|\) are the lengths of \(\vec{q} \) and \(\vec{d} \).
- This is the cosine similarity of \(\vec{q} \) and \(\vec{d} \) or, equivalently, the cosine of the angle between \(\vec{q} \) and \(\vec{d} \).
Cosine for normalized vectors

- For normalized vectors, the cosine is equivalent to the dot product or scalar product.
Cosine for normalized vectors

- For normalized vectors, the cosine is equivalent to the dot product or scalar product.

\[
\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i \quad \text{(if } \vec{q} \text{ and } \vec{d} \text{ are length-normalized).}
\]
Cosine similarity illustrated
Cosine: Example

How similar are the novels? *SaS*: Sense and Sensibility, *PaP*: Pride and Prejudice, and *WH*: Wuthering Heights?
How similar are the novels? SaS: Sense and Sensibility, PaP: Pride and Prejudice, and WH: Wuthering Heights?

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

How similar are the novels?
Cosine: Example

term frequencies (counts)

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>
Cosine: Example

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

log frequency weighting

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Cosine: Example

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

(To simplify this example, we don’t do idf weighting.)
Cosine: Example

log frequency weighting

term	SaS	PaP	WH
affection | 3.06 | 2.76 | 2.30
jealous | 2.0 | 1.85 | 2.04
gossip | 1.30 | 0 | 1.78
wuthering | 0 | 0 | 2.58
Cosine: Example

log frequency weighting

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

log frequency weighting & cosine normalization

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0.0</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0.0</td>
<td>0.0</td>
<td>0.588</td>
</tr>
</tbody>
</table>
Cosine: Example

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
<th>log frequency weighting</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
<th>log frequency weighting & cosine normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\cos(SaS, PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94.
\]
Cosine: Example

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0.0</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0.0</td>
<td>0.0</td>
<td>0.588</td>
</tr>
</tbody>
</table>

- \(\cos(SaS, PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94. \)
- \(\cos(SaS, WH) \approx 0.79 \)
Cosine: Example

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0.0</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0.0</td>
<td>0.0</td>
<td>0.588</td>
</tr>
</tbody>
</table>

- \(\cos(SaS, PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94. \)
- \(\cos(SaS, WH) \approx 0.79 \)
- \(\cos(PaP, WH) \approx 0.69 \)
Cosine: Example

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.0</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

log frequency weighting

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0.0</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0.0</td>
<td>0.0</td>
<td>0.588</td>
</tr>
</tbody>
</table>

log frequency weighting & cosine normalization

- \(\cos(SaS, PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94 \).
- \(\cos(SaS, WH) \approx 0.79 \)
- \(\cos(PaP, WH) \approx 0.69 \)
- Why do we have \(\cos(SaS, PaP) > \cos(SaS, WH) \)?
Computing the cosine score
Components of tf-idf weighting

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>n (no)</td>
<td>n (none)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>t (idf)</td>
<td>c (cosine)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>p (prob idf)</td>
<td>u (pivoted unique)</td>
</tr>
<tr>
<td>b (boolean)</td>
<td></td>
<td>b (byte size)</td>
</tr>
<tr>
<td>L (log ave)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Term frequency**
 - n (natural): t_f, d
 - l (logarithm): $1 + \log(t_f, d)$
 - a (augmented): $0.5 + \frac{0.5 \times t_f, d}{\max(t_f, d)}$
 - b (boolean): $\begin{cases} 1 & \text{if } t_f, d > 0 \\ 0 & \text{otherwise} \end{cases}$
 - L (log ave): $\frac{1 + \log(t_f, d)}{1 + \log(\text{ave}_{t \in d}(t_f, d))}$

- **Document frequency**
 - n (no): 1
 - t (idf): $\log \frac{N}{d_f}$

- **Normalization**
 - n (none): 1
 - c (cosine): $\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$
 - u (pivoted unique): $1/u$
 - b (byte size): $1/\text{CharLength}^\alpha$, $\alpha < 1$
Components of tf-idf weighting

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>tf(_{t,d})</td>
<td>n (no) 1</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>1 + log(tf(_{t,d}))</td>
<td>t (idf) log(\frac{N}{df_t})</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>0.5 + (\frac{0.5 \times tf_{t,d}}{\text{max}t(tf{t,d})})</td>
<td>p (prob idf) (\max{0, \log \frac{N-df_t}{df_t}})</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>(\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases})</td>
<td>u (pivoted unique) (1/u)</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>(\frac{1 + \log(tf_{t,d})}{1 + \log(\text{ave}{t\in d}(tf{t,d}))})</td>
<td>b (byte size) (1/\text{CharLength}^\alpha), (\alpha < 1)</td>
</tr>
</tbody>
</table>

Best known combination of weighting options

- Default: no weighting
Components of tf-idf weighting

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>n (no)</td>
<td>n (none)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>t (idf)</td>
<td>c (cosine)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>p (prob idf)</td>
<td>u (pivoted unique)</td>
</tr>
<tr>
<td>b (boolean)</td>
<td></td>
<td>b (byte size)</td>
</tr>
<tr>
<td>L (log ave)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t f_{t,d}$</td>
<td>$N_{d,t}$</td>
<td>$1/CharLength^\alpha$, $\alpha < 1$</td>
</tr>
</tbody>
</table>

Default: no weighting
tf-idf example

- We often use different weightings for queries and documents.
tf-idf example

- We often use **different weightings** for queries and documents.
- Notation: qqq.ddd
tf-idf example

- We often use different weightings for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
We often use different weightings for queries and documents.

- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization

Isn't it bad to not idf-weight the document?

Example query: best car insurance
Example document: car insurance auto insurance
tf-idf example

- We often use **different weightings** for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization
tf-idf example

- We often use **different weightings** for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization
- Isn’t it bad to not idf-weight the document?
tf-idf example

- We often use **different weightings** for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization
- Isn’t it bad to not idf-weight the document?
- Example query: “best car insurance”
We often use different weightings for queries and documents. Notation: qqq.ddd

Example: ltn.lnc

query: logarithmic tf, idf, no normalization
document: logarithmic tf, no df weighting, cosine normalization

Isn’t it bad to not idf-weight the document?

Example query: “best car insurance”
Example document: “car insurance auto insurance”
tf-idf example: ltn.Inc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query</th>
<th>document</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wght</td>
</tr>
<tr>
<td>auto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>best</td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query</th>
<th>document</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wght</td>
</tr>
<tr>
<td>auto</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query</th>
<th>document</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wght</td>
<td>df</td>
</tr>
<tr>
<td>auto</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: **tf-raw**: raw (unweighted) term frequency, **tf-wght**: logarithmically weighted term frequency, **df**: document frequency, **idf**: inverse document frequency, **weight**: the final weight of the term in the query or document, **n’lized**: document weights after cosine normalization, **product**: the product of final query weight and final document weight.
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query</th>
<th>document</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wght</td>
<td>df</td>
</tr>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, **tf-wght**: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query tf-raw</th>
<th>query tf-wght</th>
<th>query df</th>
<th>query idf</th>
<th>query weight</th>
<th>document tf-raw</th>
<th>document tf-wght</th>
<th>document weight</th>
<th>document n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: **tf-raw**: raw (unweighted) term frequency, **tf-wght**: logarithmically weighted term frequency, **df**: document frequency, **idf**: inverse document frequency, **weight**: the final weight of the term in the query or document, **n’lized**: document weights after cosine normalization, **product**: the product of final query weight and final document weight.

Scoring
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td></td>
<td></td>
<td>2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>2.3</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query tf-raw</th>
<th>query tf-wght</th>
<th>query df</th>
<th>query idf</th>
<th>query weight</th>
<th>document tf-raw</th>
<th>document tf-wght</th>
<th>document weight</th>
<th>document n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>0</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>0.68</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.68</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight
tf-idf example: ltn.lnc

Query: “best car insurance”. **Document:** “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

Key to columns:
- tf-raw: raw (unweighted) term frequency
- tf-wght: logarithmically weighted term frequency
- df: document frequency
- idf: inverse document frequency
- weight: the final weight of the term in the query or document
- n’lized: document weights after cosine normalization
- product: the product of final query weight and final document weight

The vector space representation of these terms can be calculated using the formula:

\[
\text{product} = \text{query weight} \times \text{document weight}
\]

For the given example:

\[
\text{product} = 0 \times 1 + 0 \times 1 + 1 \times 1 = 1.04
\]

Questions?

Scoring

45 von 47
tf-idf example: ltn.Inc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>query</th>
<th>document</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tf-raw</td>
<td>tf-wght</td>
<td>df</td>
</tr>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight

\[
\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92 \\
1/1.92 \approx 0.52 \\
1.3/1.92 \approx 0.68
\]
tf-idf example: ltn.Inc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>0</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>1.04</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.68</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>0</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>1.04</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.68</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight

Final similarity score between query and document: \[\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08 \]
Term frequency tf-idf weighting

The vector space

tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>0</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>1.04</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.68</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.

Final similarity score between query and document: \(\sum_i w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08 \)

Questions?
Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
- Return the top K (e.g., $K = 10$) to the user
Resources

- Chapters 6 and 7 of IIR
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- Vector space for dummies
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- Vector space for dummies
- Exploring the similarity space (Moffat and Zobel, 2005)
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- Vector space for dummies
- Exploring the similarity space (Moffat and Zobel, 2005)
- Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR)